If it's not what You are looking for type in the equation solver your own equation and let us solve it.
15x^2-12x-1=0
a = 15; b = -12; c = -1;
Δ = b2-4ac
Δ = -122-4·15·(-1)
Δ = 204
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{204}=\sqrt{4*51}=\sqrt{4}*\sqrt{51}=2\sqrt{51}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-12)-2\sqrt{51}}{2*15}=\frac{12-2\sqrt{51}}{30} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-12)+2\sqrt{51}}{2*15}=\frac{12+2\sqrt{51}}{30} $
| 6-p=8 | | 0.44+t=6.68 | | 2(y-7)=-7 | | 0.44+t=0.9 | | 15x^2-12x-7=0 | | 27+7(x+1)=90 | | 9p-8=-350 | | 32-0.375y=0.25y+5 | | 21/4+v=-7 | | -15.2=3.8r | | 5^(4-2x)=125 | | -3/i=-15 | | 5^4-2x=125 | | 6(x+6.5)=12 | | 6x+3=7x+10 | | 6+0.20a=0.90a | | 1/3=c-1/8 | | 5=2.8+f | | 7c+20=25 | | -10=a/2 | | 7x+11=8x-3 | | 18.2=-2.6y | | 4z2−8=0 | | 3x+24=4x+7 | | 32s=55 | | 119.88=9.99x | | 5x+12=11x−6 | | 2n+22=9n−6 | | 6b+24=12b | | 4+2(1+6y)=-6 | | 4q+30=10q | | 6=b/13 |